
C.Sulochana Int. Journal of Engineering Research and Applications                              www.ijera.com 

ISSN : 2248-9622, Vol. 4, Issue 9( Version 4), September 2014, pp.157-192 

 www.ijera.com                                                                                                  157 | P a g e  

 

 

 

Convective Heat And Mass Transfer Flow Of A Micropolar Fluid 

In A Rectangular Duct With Soret And Dufour Effects And Heat 

Sources 

 

C.Sulochana
a
, K. Gnanaprasunamba

b
* 

a  
Department of Mathematics, Gulberga University, Gulberga, Karnataka, India 

b
 Department of Mathematics, SSA Govt. First Grade College, Bellary, Karnataka, India 

 

 

Abstract 
In this chapter we make an investigation of the convective heat transfer through a porous medium in a 

Rectangular enclosure with Darcy model. The transport equations of liner momentum, angular momentum and 

energy are solved by employing Galerkine finite element analysis with linear triangular elements. The 

computation is carried out for different values of Rayleigh number – Ra micropolar parameter – R, spin gradient 

parameter, Eckert number Ec and heat source parameter. The rate of heat transfer and couple stress on the 

side wall is evaluated for different variation of the governing parameters. 
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I. INTRODUCTION 
As high power electronic packaging and component density keep increasing substantially with the fast 

growth of electronic technology, effective cooling of electronic equipment has become exceptionally necessary. 

Therefore, the natural convection in an enclosure has become increasingly important in engineering applications 

in recent years. Through studies of the thermal behavior of the fluid in a partitioned enclosure is helpful to 

understand the more complex processes of natural convection in practical applications Number of studies, 

numerical and experimental, concerned with the natural convection in an enclosure with or without a divider 

were conducted in past years. 

Several relevant analytical and experimental studies have been reported during the past decades. Excellent 

reviews have been given by Ostrach [17] and Catton [2]. The critical Rayleigh numbers for natural convection 

in rectangular boxes heated from below and cooled from above have been obtained theoretically by Davis [7] 

and Cotton [4]. Samuels and Churchill [20] presented the stability of fluids in rectangular region heated from 

below and obtained the critical Rayleigh numbers with finite differences approximation. Ozoe et. al., [18,19] 

determined experimentally and numerically the natural convection in an inclined long channel with a 

rectangular cross-section, and found the effects of inclination angle and aspect ratio on the circulation and rate 

of heat transfer, Wilson and  Rydin [22] discussed bifurcation phenomenon in a rectangular cavity, as calculated 

by a nodal integral method. They obtained critical aspect ratios and Rayleigh numbers and found good 

agreement with the results of Ref [5]. Numerous studies have been presented for a different arrangement of 

boundary conditions [14-15]. Several analytical studies of natural heat transfer in a rectangular porous cavity 

have been carried out recently [1, 2]. The theory of micropolar fluids developed by Erigen [8, 9, 11] has been a 

popular filed of research in recent years. In this theory, the local effects arising from the microstructure and the 

intrinsic motions of the fluid elements are taken into account. It has been expected to describe properly the non-

Newtonian behavior of certain fluids, such as liquid crystals, ferroliquids, colloidal fluid, and liquids with 

polymer additives. Recently Jena and Bhattacharya [13] studied the effect of microstructure on the thermal 

convection in a rectangular box heated from below wit Galerkin’s method, and obtained critical Rayleigh 

numbers for various material parameters, Cehn and Hsu [6] considered the effect of mesh size on the thermal 

convection in an enclosed cavity. Wang et.al., [24] presented the study of the natural convection of micropolar 

fluids in an inclined rectangular enclosure, HSU et. al., [24] investigated the thermal convection of micropolar 

fluids in a lid-driven cavity. They reported that the material parameters such as voters viscosity and sin gradient 

viscosity strongly influence the flow structure and heat transfer. Cha-Kaungchen et. al., [6] have investigated 

numerically the steady laminar natural convection flow of a micropolar fluid in a rectangular cavity. The angular 

momentum and energy are solved with the aid of the cubic spline collocation method. Parametric studies of the 

effects of microstructure on the fluid flow and heat transfer in the enclosure have been performed.  
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Wang et. al., (23) have investigated natural convection flow of a micropolar fluid in a partially divided 

rectangular enclosure. The enclosure is partially divided protruding flore of the enclosure. The effect of the 

highest on the location of the divider is investigated. Also the effects of material parameters or micropolar fluids 

or the thermal characters, are also studied for different Rayleigh numbers. Tsan – Hsu et. al., (6) have 

investigated the effects, the characteristic parameters of micropolar fluids on mixed convection in a cavity. The 

equations are solved with the help of the cubic spin collocation method.  

In this chapter we make an investigation of the convective heat transfer through a porous medium in a 

Rectangular enclosure with Darcy model. The transport equations of liner momentum, angular momentum and 

energy are solved by employing Galerkine finite element analysis with linear triangular elements. The 

computation is carried out for different values of Rayleigh number – Ra micropolar parameter – R, spin gradient 

parameter, Eckert number Ec and heat source parameter. The rate of heat transfer and couple stress on the 

side wall is evaluated for different variation of the governing parameters. 

 

II. FORMULATION OF THE PROBLEMS 
We consider the mixed convective heat and mass transfer flow of a viscous, incompressible, micropolar 

fluid in a saturated porous medium confined in the rectangular  duet whose base length is  a and height b. the 

heat flux on the base and top walls is maintained constant. The Cartesian coordinate system           0(x, y) is 

chosen with origin on the central axis of the duct and its base parallel to X-axis, we assume that 

(i) The convective fluid and the porous medium are everywhere in local thermodynamic equilibrium. 

(ii) There is no phase change of the fluid in the medium. 

(iii) The properties of the fluid and of the porous medium are homogeneous and isotropic. 

(iv) The porous medium is assumed to be closely packed so that Darcy’s momentum law is adequate in 

the porous medium.  

(v) The Boussinesq approximation is applicable,  

 

under the assumption the governing equations are given by 
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where u and v are Darcy velocities along 0(x, y) direction. T, N, p and g are the temperature, micro rotation, 

pressure and acceleration due to gravity, Tc and Th are the temperature on the cold and warm side walls 

respectively. , , v and  are the density, coefficients of viscosity, kinematic viscosity and thermal expansion 

of the fluid, k1 is the permeability of the porous medium, , k are the micropolar and material constant pressure , 

Q is the strength of the heat source,k11&k2 

is the cross diffusivities,1 is the chemical reaction parameter,  

The boundary conditions are 

 u = v = 0  on the boundary of the duct 
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 T = Th ,C=Ch on the side wall to the right (x = 1) 

 T = Tc ,C=Cc on the side wall to the right (x = 0)   (2.7) 
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Eliminating the pressure p from equations (2.2) & (2.3) and using (2.6) we get 
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On introducing the stream function, as 
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Now introducing the following non-dimensional variables  
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the equations (2.12) – (2.14) in the non-dimensional form are 
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And the corresponding boundary conditions are  

y = x = 0 on the boundary         (2.18a) 
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III. FINITE ELEMENT ANALYSIS AND SOLUTION OF THE PROBLEM 
The region is divided into a finite number of three noded triangular elements, in each of which the element 

equation is derived using Galerkin weighted residual method. In each element fi the approximate solution for an 

unknown f in the variation formulation is expressed as a linear combination of shape function  i

kN k = 1, 2, 3, 

which are linear polynomials sin x and y. This approximate solution of the unknown f coincides with actual 

values of each node of the element. The variation formulation results in 3x3 matrix equation (stiffness matrix) 

for the unknown local nodal values of the given element. The stiffness matrices are assembled in terms of global 

nodal values using inter element continuity and boundary conditions resulting in global matrix equation. 

In each case there are r district global nodes in the finite element domain and fp = (p =1, 2.r) is the global 

nodal values of any unknown f defined over the domain  
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Under Galaerkin method this is made orthogonal over the domain ei to the respective shape functions (weight 
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Using Greeen’s theorem we reduce the surface integral (3.4) & (3.5) without affecting  terms and obtain 
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Where sQQQQQ i

k

i

k

i

k

i

k

i

k ',321  being the values of 
i

kQ on the sides s = (1, 2, 3) of the element ei. The 

sign of
i

kQ ’s depends on the direction of the outward normal with reference to the element. 

 Choosing different
i

kN ’s as weight functions and following the same procedure we obtain matrix 

equations for three unknowns )( i

pQ  

  )())(( i

k

i

p

i

p QQQ        (3.10) 
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Where )( i

pkQ 3 x 3 matrixes are, )(),( ii

p QQ  are column matrices. 

 Repeating the above process with each of s elements, we obtain sets of such matrix equations. 

Introducing the global coordinates and global values for )( i

pQ  and making use of inter element continuity and 

boundary conditions relevant to the problem the above stiffness matrices are assembled to obtain a global matrix 

equation. This global matrix is rxr square matrix if there are r distinct global nodes in the domain of flow 

considered. 

 Similarly substituting 
i
 

i
 ,

i 
, and 

i
  in (2.12) and defining the error and following the Galerkin 

method we obtain using Green’s Theorem, (3.8) reduces to  
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(3.9) 

in obtaining (3.9) the Green’s Theorem is applied with reference to derivatives of  without affecting  terms. 

 Using (3.1-3.1c) in (3.9) we have 
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In the problem under consideration, for computational purpose, we choose uniform mesh of 10 triangular 

elements. The domain has vertices whose global coordinates are (0, 0), (1, 0) and (1, c) in the non-dimensional 

form. Let e1, e2…..e10 be the ten elements and let 1, 2,….10 be the global values of  and 1, 2 ….10 are the 

global values of  at the global nodes of the domain. 

 

IV. SHAPE FUNCTIONS AND STIFFNESS MATRICES 
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The global matrix for  is  

A3 X3 = B3        (4.1) 

The global matrix for N is  

A4 X4 = B4        (4.2) 

The global matrix  is 

A5 X5 = B5        (4.3) 

where 
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The domain consists three horizontal levels and the solution for Ψ, θ and N at each level may be expressed in 

terms of the nodal values as follows, 

In the horizontal strip    0 ≤y ≤
3

h
 

 Ψ= (Ψ1N
1
1+ Ψ2N

1
2+ Ψ7N

1
7) H (1- τ1) 

         = Ψ1 (1-4x)+ Ψ24(x-
h

y
)+ Ψ7 ( 

h

y4
 (1- τ1 )   (0≤ x≤

3

1
 ) 

 Ψ =( Ψ2N
3
2+ Ψ3N

3
3+ Ψ6N

3
6) H(1- τ2) 

     + (Ψ2N
2
2+ Ψ7N

2
7+ Ψ6N

2
6)H(1- τ3)                     (

3

1
≤ x≤

3

1
 )        

         =( Ψ22(1-2x) + Ψ3 (4x-
h

y4
-1)+ Ψ6 (

h

y4
))H(1- τ2) 

        +( Ψ2 (1-
h

y4
)+ Ψ7 (1+

h

y4
-4x)+ Ψ6 (4x-1))H(1- τ3) 

   Ψ =( Ψ3N
5

3+ Ψ4N
5
4+ Ψ5N

5
5) H(1- τ3) 

     + (Ψ3N
4
3+ Ψ5N

4
5+ Ψ6N

4
6)H(1- τ4)               (

3

2
≤ x≤1) 

    =( Ψ3 (3-4x) + Ψ42(2x-
h

y2
-1)+ Ψ6 (

h

y4
-4x+3))H(1- τ3) 

        + Ψ3 (1-
h

y4
)+ Ψ5 (4x-3)+ Ψ6 (

h

y4
))H(1- τ4) 

Along the strip           
3

h
≤ y≤

3

2h
   

         Ψ =( Ψ7N
6

7+ Ψ6N
6
6+ Ψ8N

6
8) H(1- τ2)      (

3

1
≤ x≤1) 

          +( Ψ6N
7
6+ Ψ9N

7
9+ Ψ8N

7
8) H(1- τ3)+( Ψ6N

8
6+ Ψ5N

8
5+ Ψ9N

8
9) H(1- τ4) 

         Ψ =( Ψ7 2(1-2x) + Ψ6 (4x-3)+ Ψ8 (
h

y4
-1))H(1- τ3) 

           + Ψ6 (2(1-
h

y2
)+ Ψ9 (

h

y4
-1)+ Ψ8 (1+

c

y4
-4x))H(1- τ4) 

           + Ψ6 (4(1-x)+ Ψ5 (4x-
c

y4
-1)+ Ψ92(

h

y2
-1))H(1- τ5) 

 Along the strip      
3

2h
≤ y≤1 

Ψ = ( Ψ8N
9
8+ Ψ9N

9
9+ Ψ10N

9
10) H(1- τ6)                    (

3

2
≤ x≤1) 

      = Ψ8 (4(1-x)+ Ψ94(x-
h

y
)+ Ψ102(

h

y4
-3))H(1- τ6) 

where         τ1= 4x ,           τ2 = 2x ,            τ3 =
3

4x
 ,   

                      τ4= 4(x-
h

y
),     τ5= 2(x-

h

y
),      τ6 = 

3

4
(x-

h

y
)  

And H represents the Heaviside function. 

The expressions for θ are 
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In the horizontal strip    0≤ y≤
3

h
  

 θ = [θ1 (1-4x) + θ2 4(x-
h

y
) + θ7 (

h

y4
)) H (1- τ1)              (0≤ x≤

3

1
 ) 

θ = (θ 2(2(1-2x) + θ3 (4x-
c

y4
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c

y4
)) H (1- τ2) 
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h

y4
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h

y4
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3

1
≤ x≤

3

2
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h
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h
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h
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) + θ 5(4x-3) + θ 6(

h

y4
)) H (1- τ4)   (

3

2
≤ x≤1) 

Along the strip    
3

h
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h
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Along the strip      
3
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≤ y≤1 

      θ = (θ84(1-x) +  θ 94(x- 
h

y
)+ θ 10(

h

y4
-3) H(1- τ6)      (

3

2
≤ x≤ 1) 

The expressions for N are 
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Along the strip      
3

2h
≤ y≤1 

      N = (N84 (1-x) +  N94(x- 
h

y
)+ N10 (

h

y4
-3) H(1- τ6)      (

3

2
≤ x≤ 1) 

The dimensionless Nusselt numbers on the non-insulated boundary walls of the rectangular duct are calculated 

using the formula 

Nu = (
x


) x=1 

Nusselt number on the side wall x=1 in the different regions are 

Nu1 = 2-4 θ3,  3

*

1 42 NM     0≤ y≤
3

c
  

Nu2= 2-4 θ6               6

*

2 42 NM                
3

c
≤ y≤ 2

3

c
 

Nu3 = 2-4 θ9,            9

*

3 42 NM    
3

2c
≤ y≤1                               

The details of a11, b11, ar1, br1, cr1 etc., are shown in appendix 

 

The equilibrium conditions are 

 02

1

1

3  RR ,     03

1

2

3  RR  

 04

1

3

3  RR ,     05

1

4

3  RR  

 02

1

1

3  QQ ,     03

1

2

3  QQ  

 04

1

3

3  QQ ,     05

1

4

3  QQ  

 02

1

1

3  SS ,     03

1

2

3  SS  

 04

1

3

3  SS ,     05

1

4

3  SS  4.4 

Solving these coupled global matrices for temperature, Micro concentration and velocity (4.1 – 4.3) respectively 

and using the iteration procedure we determine the unknown global nodes through which the temperature, 

Micro rotation and velocity of different intervals at any arbitrary axial cross section are obtained.  

 

V. DISCUSSION 

In this analysis we investigate the effect of dissipation and heat sources on convective heat and mass 

transfer flow of a micropolar fluid through a  porous medium in a rectangular duct. The non-linear coupled 

equations governing the flow, heat and mass transfer have been solved by using Galerikin finite element 

analysis with three nodded triangular elements and Prandtl number Pr is taken as 0.71. 

The non-dimensional temperature ‘’ is exhibited in fig 1-12 for different values of G, D
-1

, Sc, N,, Ec, R 

&  at different levels. We follow the convention that, the non-dimensional temperature is positive or negative 

according as the actual temperature is greater/smaller than the equilibrium temperature. 

  

Figs. (1-4) represent  with G, D
-1

 & Sc. It is found that an increase in G enhances the actual temperature at 

3

2h
y   level, 

3

1
x  &

3

2
x  levels and reduces at 

3

h
y   level. With respect to Darcy parameter D

-1
, we 

find the lesser the permeability of the porous medium larger the actual temperature at
3

2h
y  , 

3

1
x  &

3

2
x  levels and smaller at 

3

h
y  level. The variation of  with Schmidt number Sc shows that lesser the 

molecular diffusivity larger the actual temperature at 
3

2h
y   and 

3

h
y   levels and smaller at

3

1
x  level. 

At x=2/3  
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level an increase in Sc  0.6 enhances the actual temperature while it reduces with higher Sc  1.3 (figs 1-

4).Figs (5-8) represent ‘’ with N &  at different levels. It is found that when the molecular buoyancy force 

dominates over the thermal buoyancy force, the actual temperature enhances at
3

2h
y  , 

3

1
x  and 

3

2
x

levels and reduces at 
3

h
y  level when the buoyancy forces are in the same direction and for the forces acting 

in the opposite directions, the actual temperature reduces at 
3

2h
y  ,

3

h
y  , 

3

1
x  levels and at 

3

2
x  

level, it enhances in the horizontal region (0  y  0.264) and reduces in the region (0.333  y  0.666).The 

variation of  with heat source parameter ‘’ shows that at 
3

2h
y   level, the actual temperature reduces with 

 > 0 and enhances ||. At 
3

h
y   level, the actual temperature reduces for   4 and enhances at higher  > 6 

while it reduces || (fig. 5). At 
3

1
x  level, the temperature enhances in the region                (0, 0.067) and 

reduces in the region (0.134, 0.333) for   4. For higher   6 the actual temperature reduces in the region (0, 

0.201) and enhances in the region (0.268, 0.333). An increase in || leads to a depreciation in the actual 

temperature (fig. 7). At 
3

2
x  level, an increase in   4 reduces the actual temperature except in the 

horizontal strip (0, 0.066) and for higher   6, the actual temperature increase in the region (0, 0.333) and 

reduces in the region (0.369, 0.666). An increase in || results in an enhancement in the actual temperature (fig. 

8).Figs (9-12) represent  with Ec, R &. It is found that higher the dissipative heat larger the actual temperature 

at  
3

h
y   and 

3

1
x  levels and smaller at 

3

2h
y   and 

3

2
x  levels. An increase in micro rotation 

parameter R reduces the actual temperature at
3

2h
y  , 

3

h
y   and 

3

1
x  levels. At 

3

2
x  level the actual 

temperature enhances in the horizontal strip (0, 0.132) and reduces in the region (0.198, 0.666). An increase in 

the spin gradient parameter  leads to an enhancement in the actual temperature at all levels (figs 9-12).  

 The non-dimensional concentration (C) is shown in figs 13-24 for different parametric values. We 

follow the convention that the concentration is positive or negative according as the actual concentration is 

greater/lesser than the equilibrium concentration. Figs (13-16) represent the concentration. ‘C’ with G, D
-1

 & Sc. 

It is found that the actual concentration enhances at 
3

2h
y   and 

3

1
x  levels, while it reduces at 

3

h
y  and 

3

2
x  level. With reference to D

-1
 we find that lesser the permeability of the porous medium, larger the actual 

concentration at 
3

2h
y   and 

3

1
x  levels and smaller at 

3

h
y   level. At 

3

2
x  level the concentration 

reduces with D
-1

 in the horizontal strip (0, 0.333) and enhances in the region (0.369, 0.666). With reference to 

Sc, we find that lesser the molecular diffusivity smaller the actual concentration at both the horizontal levels. At 

3

1
x  level the actual concentration enhances with Sc  0.6 in the region (0, 0.134) and reduces in the region 

(0.201, 0.333) and for higher Sc  1.3, we notice a depreciation everywhere in the region except in the region (0, 

0.666) (figs 13-16). 

Figs (17- 20) represent concentration with buoyancy ratio ‘N’ and heat source parameter . It is found that the 

molecular buoyancy force dominates over the thermal buoyancy force, the actual concentration reduces at both 

the horizontal levels and enhances at both the vertical level when the buoyancy forces are in the same direction 

and for the forces acting in opposite directions, the actual concentration reduces at all levels. With reference to 

heat source parameter , we find that the actual concentration reduces with increase in   4 and enhances with 
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higher   6. An increase in the strength of heat absorbing source ||(<0) enhances the actual concentration at 

both the horizontal levels. At 
3

1
x  level, the actual concentration enhances in the region (0, 0.134) and 

reduces in the region (0.201, 0.333) with   4 and for higher   6; we notice an enhancement in the actual 

concentration. At 
3

2
x  level the actual concentration reduces with  in the region (0, 0.132) and enhances in 

the region (0.201, 0.666) (figs 17-20). 

Figs (21-24) represents the concentration with Ec, R and. It is found that higher the dissipative heat smaller the 

actual concentration at both the horizontal levels and larger at 
3

1
x  level. At 

3

2
x  level, higher the 

dissipative heat larger the actual concentration in the region (0, 0.264) and smaller in the region (0.333, 0.666). 

An increase in R enhances the actual concentration at all levels. An increase in spin gradient parameter  leads 

to the depreciation at both the horizontal levels and at 
3

2
x  level, while it enhances at 

3

1
x  level. (Figs 21-

24). 

Figs 25-28 represent micro rotation (  )with different value of G, D
-1

 & Sc. It is found that at
3

h
y  , 

3

1
x  &

3

2
x  levels, the micro-rotation enhances with increasing G  210

2
 and reduces for G  310

2
 

while at 
3

2h
y   level, the micro rotation enhances with G. With respect to D

-1
, we find that the micro rotation 

reduces with D
-1

  10 and enhances with D
-1

  15 at 
3

h
y  ,

3

1
x  & 

3

2
x  levels, while it enhances with D

-

1
, at 

3

2h
y   level, The variation on  with  Schmidt number Sc shows that lesser the molecular diffusivity 

smaller the micro rotation at 
3

h
y   & 

3

1
x  levels. At 

3

2h
y   level the micro-rotation reduces with Sc  

0.6 and enhances with higher Sc  1.3. At 
3

2
x  level, the micro rotation enhances with Sc  0.6 and for 

higher Sc = 1.3, it reduces and for still higher Sc  2.01 we notice an enhancement in the micro-rotation. (Figs 

25-28). Figs.29-32 represents micro rotation with buoyancy ratio N and heat source parameter. It is found that 

when the molecular buoyancy force dominates over the thermal buoyancy force, the micro rotation reduces at 

3

h
y   &

3

1
x  levels and enhances at 

3

2h
y  level irrespective of the directions of the buoyancy forces. At 

3

2
x  levels, the micro rotation enhances with N > 0 and reduces with |N|. With respect to heat source 

parameter  we find that the micro rotation reduces at 
3

h
y   & 

3

1
x  level. At 

3

2h
y   and 

3

2
x  levels, 

the micro rotation enhances with   4 and reduces with higher   6 while it reduces with the strength of the 

heat absorption source || (figs 29-32). With respect to Ec we find that higher the dissipative heat larger the 

micro rotation at all levels. An increase in the micro rotation parameter ‘R’ enhances the micro rotation at all 

levels. With respect to spin gradient parameter, we find that the micro rotation enhances at 
3

2h
y   and 

3

1
x  levels and reduces at 

3

2h
y   & 

3

2
x  levels (figs 33-36). 
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Fig. 1: Variation of  with G, D
-1

, Sc at 
3

2h
y   level 

 

 

Fig. 2: Variation of  with G, D
-1

, Sc at 
3

h
y   level 
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Fig. 3: Variation of  with G, D
-1

, Sc at 
3

1
x   level 

 

Fig. 4: Variation of  with G, D
-1

, Sc at 
3

2
x   level 
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Fig. 5: Variation of  with N,  at 
3

2h
y   level 

 

Fig. 6: Variation of  with N,  at 
3

h
y   level
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Fig. 7: Variation of  with N,  at 
3

1
x   level 

 

Fig. 8: Variation of  with N,  at 
3

2
x   level 
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Fig. 9: Variation of  with Ec, R,  at 
3

2h
y   level 

 

Fig. 10: Variation of  with Ec, R,  at 
3

h
y   level
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Fig. 11: Variation of  with Ec, R,  at 
3

1
x   level 

 

Fig. 12: Variation of  with Ec, R,  at 
3

2
x   level 
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Fig. 13: Variation of C with G, D
-1

, Sc at 
3

2h
y   level 

 

 

Fig. 14: Variation of C with G, D
-1

, Sc at 
3

h
y   level
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Fig. 15: Variation of C with G, D
-1

, Sc at 
3

1
x   level 

 

 

 

Fig. 16: Variation of C with G, D
-1

, Sc at 
3

2
x   level 
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Fig. 17: Variation of C with N,  at 
3

2h
y   level 

 

Fig. 18: Variation of C with N,  at 
3

h
y   level
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Fig. 19: Variation of C with N,  at 
3

1
x   level 

 

 

Fig. 20: Variation of C with N,  at 
3

2
x   level 
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Fig. 21: Variation of C with Ec, R,  at 
3

2h
y   level 

 

 

Fig. 22: Variation of C with Ec, R,  at 
3

h
y   level
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Fig. 23: Variation of C with Ec, R,  at 
3

1
x   level 

 

 

Fig. 24: Variation of C with Ec, R,  at 
3

2
x   level 
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Fig. 25: Variation of N with G, D
-1

, Sc at 
3

2h
y   level 

 

 

 

Fig. 26: Variation of N with G, D
-1

, Sc at 
3

h
y   level
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Fig. 27: Variation of N with G, D
-1

, Sc at 
3

1
x   level 

 

 

 

Fig. 28: Variation of N with G, D
-1

, Sc at 
3

2
x   level 
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Fig. 29: Variation of N with N,  at 
3

2h
y   level 

 

 

Fig. 30: Variation of N with N,  at 
3

h
y   level
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Fig. 31: Variation of N with N,  at 
3

1
x   level 

 

 

 

Fig. 32: Variation of N with N,  at 
3

2
x   level 
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Fig. 33: Variation of N with Ec, R,  at 
3

2h
y   level 

 

 

 

Fig. 34: Variation of N with Ec, R,  at 
3

h
y   level
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Fig. 35: Variation of N with Ec, R,  at 
3

1
x   level 

 

 

Fig. 36: Variation of N with Ec, R,  at 
3

2
x   level 
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The rate of heat transfer (Nusselt number) on the side x = 1 is shown in tables 1-3 for different values of D
-

1
,, N, Sc, Ec,  & R. We find that the rate of heat transfer on the lower and upper quadrants reduces with 

increase in G and D
-1

, while on the middle quadrant |Nu| enhances with increase in G or D
-1

. The variation of Nu 

with micro polar parameter R shows that an increase R  0.2 enhances the Nusselt number on all the three 

quadrants, while for higher R  0.3, it depreciates on the lower quadrant and enhances on the middle and upper 

quadrants. With reference to spin gradient parameter, we find that |Nu| reduces with  on all three quadrants 

(table 1). The variation of Nusselt number with heat source parameter  shows that |Nu| reduces with  on the 

lower quadrant and enhances on the middle and upper quadrants and an increase in the strength of heat 

absorbing source leads to an enhancement in |Nu| on all three quadrants. With respect to Ec, we find that higher 

the dissipation heat larger |Nu| on all the three quadrants. The variation of Nu with buoyancy ratio ‘N’ shows 

that when molecular buoyancy force dominates over the thermal buoyancy force, the rate of heat transfer 

reduces irrespective of the directions of buoyancy forces (table (3). 

The variation of Nu with Sc shows that lesser the molecular diffusivity (Sc  0.6) smaller |Nu| on lower and 

upper quadrants and larger on the middle and for further lowering of molecular diffusivity (Sc  1.3) larger |Nu| 

on all the quadrants and for still lowering of the molecular diffusivity (Sc  2.01) |Nu| enhances on the lower 

and middle quadrants and reduces on the upper quadrant (table 2). 

The rate of mass transfer (Sherwood number (Sh) on the side x = 1, is shown in tables 4-6 for different 

parameter values. It is found that the rate of mass transfer on the lower and upper quadrants reduces with 

increase in G & D
-1

, and an increase G  2 & D
-1

  10 leads to depreciation in |Sh| on the middle quadrant while 

for higher G  3 or D
-1

  15, we notice an enhancement in |Sh|. The variation of Sh with micro polar parameter 

R shows that |Sh| enhances on the lower and middle and reduces on the upper quadrant for R  0.2 and for 

higher R0.3, |Sh| reduces on the lower and upper quadrants and enhances on the middle quadrant. With 

reference to spin gradient parameter  we find that |Sh| enhances on the lower and upper quadrants and reduces 

on the middle quadrant (table 4). 

The variation of Sh with buoyancy ratio ‘N’ shows that when molecular buoyancy force dominates over the 

thermal buoyancy force, the rate of mass transfer reduces on the lower and middle quadrants and enhances on 

the upper quadrant irrespective of the directions of buoyancy forces. With respect to Sc, we find that the rate of 

mass transfer enhances on the lower and middle quadrants and reduces on the middle with Sc  0.6 and reduces 

for higher Sc = 1.3. An increase in Sc  2.01 reduces |Sh| on all quadrants (table 5).The variation of Sh with heat 

source parameter  shows that |Sh| on the lower and upper quadrant enhances with  > 0, and an increases in || 

enhances |Sh| on the lower and middle quadrants and reduces on the upper quadrant. With respect to Ec, we find 

that higher the dissipative heat larger |Sh| on the lower and upper quadrants and reduces on the middle quadrant 

(table 6). 

The couple stress (Cw) on x = 1, is shown in tables 7-9 for different parameter values. It is found that the Cw 

on the middle quadrant enhances with increase in G  2 or D
-1

  10 and reduces with higher G  3 or D
-1

  15, 

while on the upper quadrant; the Cw reduces with G & D
-1

. An increase in R enhances Cw on the middle 

quadrant and enhances on the upper quadrant. With respect to  we notice that Cw reduces on the middle 

quadrant and enhances on the upper quadrant (table 7).The variation of Cw with the buoyancy ratio ‘N’ shows 

that when the molecular buoyancy force dominates over the thermal buoyancy force, Cw enhances on the middle 

quadrant and reduces on the upper quadrant when the buoyancy forces are in the same direction and for the 

forces acting in opposite directions, we notice a depreciation in |Cw| on the middle and upper quadrants. With 

respect to Sc, we find that Cw reduces on the middle quadrant and enhances on the upper quadrant with increase 

in Sc (table 8).The variation of Cw with heat source parameter  shows that an increase   4 enhances on the 

middle quadrant and reduces on the upper quadrant, while for higher   6 we notice a depreciation in Cw on the 

middle quadrant and enhancement on the upper quadrant. An increase in the strength of the heat absorbing 

source (0) leads to a depreciation in Cw on both the quadrants. Also higher the dissipation heat larger the Cw 

on the middle and upper quadrants (table 9). 
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 Table – 1 

Nusselt Number at x = 1 

 

 I II III IV V VI VII VIII IX X 

Nu

1 

4.23062 4.44546

4 

2.1626

8 

3.47692

8 

2.87057

7 

3.48638 3.01192

9 

4.27064

8 

4.25296

4 

4.24444

12 

Nu

2 

-

0.31349

2 

-

0.80091

2 

7.5844

4 

0.46636 0.71491

2 

0.44475

2 

0.47027

2 

0.32206

8 

0.31879

2 

-

0.29579

6 

Nu

3 

3.58773

2 

3.36773

6 

6.877 3.13537

2 

2.77183

6 

3.12207

6 

2.85256

4 

3.64645

2 

3.60994

8 

3.30455

2 

R 0.1 0.2 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

G 10
2 

10
2
 10

2
 2x10

2
 3x10

2
 10

2
 10

2
 10

2
 10

2
 10

2
 

D
-1

 5 5 5 5 5 10 15 5 5 5 

 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.5 1.5 5 

 

Table – 2 

Nusselt Number at x = 1 

 

 I II III IV V VI VII 

Nu1 4.23062 3.739888 18.03376 1.23088 4.279596 4.16412 4.341556 

Nu2 -0.313492 0.143856 -2.2124 -0.907928 -0.10396 -0.197816 -0.392052 

Nu3 3.587732 3.40152 -4.5618 3.701552 3.86464 3.456284 3.51776 

N 1 2 -0.5 -0.8 1 1 1 

Sc 1.3 1.3 1.3 1.3 0.24 0.6 2.01 

 

Table – 3 

Nusselt Number at x = 1 

 

 I II III IV V VI VII VIII 

Nu1 4.23062 3.452648 0.08476 1.9231548 1.23036 0.787832 4.25928 4.26928 

Nu2 0.313492 1.368884 -10.53492 1.475168 0.957656 -0.582972 -0.337392 -0.347392 

Nu3 3.587732 4.910164 19.75596 1.25162 0.901824 0.657436 3.60388 3.62388 

 2 4 6 -2 -4 -6 2 2 

Ec 0.03 0.03 0.03 0.03 0.03 0.03 0.05 0.07 

 

Table – 4 

Sherwood number (Sh) at x =1 

 

 I II III IV V VI VII VIII IX X 

Sh

1 

2.9275

6 

2.9571

84 

2.4524

56 

2.84433

2 

2.57133

2 

2.83897

2 

2.62779

2 

2.8751

6 

2.9234

92 

2.9266

76 

Sh

2 

-

0.7325

6 

-

0.8650

76 

-

0.9586

8 

0.00419

2 

0.52150

4 

0.01534

8 

0.20742

8 

-

0.7869

08 

-

0.7202

44 

-

0.7149

4 

Sh

3 

2.4197

48 

2.3499

76 

-

0.8374

84 

2.38509

04 

2.30968

68 

2.37945

12 

2.31651

12 

2.4238

84 

2.4252

12 

2.4311 

R 0.1 0.2 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

G 10
2 

10
2
 10

2
 2x10

2
 3x10

2
 10

2
 10

2
 10

2
 10

2
 10

2
 

D
-

1
 

5 5 5 5 5 10 15 5 5 5 

 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.5 1.5 5 
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Table – 5 

Sherwood number (Sh) at x =1 

 

 I II III IV V VI VII 

Sh1 2.92756 2.87138 2.1291572 1.285128 3.169424 3.24714 2.658196 

Sh2 -0.73256 -0.29384 -3.5408 -0.284008 -3.51908 -1.977964 0.298544 

Sh3 2.419748 2.438928 -0.127112 2.71452 0.452388 2.60730944 2.2528428 

N 1 2 -0.5 -0.8 1 1 1 

Sc 1.3 1.3 1.3 1.3 0.24 0.6 2.01 

 

Table – 6 

Sherwood number (Sh) at x =1 

 

 I II III IV V VI VII VIII 

Sh1 2.92756 3.107556 3.208556 3.102016 3.157228 3.202524 2.93652 2.93752 

Sh2 -0.73256 -0.438788 -0.248376 -0.817008 -0.887884 -0.934416 -0.723536 -0.713636 

Sh3 2.419748 2.50834 2.6761488 2.561924 2.561108 2.555248 2.42092 2.43192 

 2 4 6 -2 -4 -6 2 2 

Ec 0.03 0.03 0.03 0.03 0.03 0.03 0.05 0.07 

 

Table – 7  

 Cw at x = 1 

 

 I II III IV V VI VII VIII IX X 

Cw

1 

2 2 2 2 2 2 2 2 2 2 

Cw 

2 

4.56769

6 

7.3062

4 

10.409

96 

7.0179

6 

3.7989

36 

7.0114

4 

6.6413

2 

6.0934 3.71354 2.51255

6 

Cw 

3 

1.70054

08 

1.3774 0.8367

68 

1.2283

76 

0.3847

56 

1.1888

64 

0.8435 1.3864

96 

1.80272

24 

1.94140

72 

R 0.1 0.2 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

G 10
2 

10
2
 10

2
 2x10

2
 3x10

2
 10

2
 10

2
 10

2
 10

2
 10

2
 

D
-1

 5 5 5 5 5 10 15 5 5 5 

 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.5 1.5 5 

 

Table – 8  

 Cw at x = 1 

 

 I II III IV V VI VII 

Cw1 2 2 2 2 2 2 2 

Cw 2 4.567696 5.513808 6.34952 2.1261428 6.0453 5.6151 4.2624 

Cw 3 1.7005408 1.487428 2.6366 1.7731 -0.1915 -1.4028 -2.1270 

N 1 2 -0.5 -0.8 1 1 1 

Sc 1.3 1.3 1.3 1.3 0.24 0.6 2.01 

 

Table – 9  

 Cw at x = 1 

 

 I II III IV V VI VII VIII 

Cw1 2 2 2 2 2 2 2 2 

Cw 2 4.567696 7.56724 2.2736208 3.618372 3.424992 3.322752 4.57604 4.576648 

Cw 3 1.7005408 0.904964 2.1045608 1.8727744 1.8707804 1.8696884 1.70204 1.7026372 

 2 4 6 -2 -4 -6 2 2 

Ec 0.03 0.03 0.03 0.03 0.03 0.03 0.05 0.07 
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